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and immunosuppressants. Their continued discovery 
remains a very active and pressing scientific concern.

The explosion in microbial genome sequencing over 
the past 15 years has shown that many organisms encode a 
wealth of PK and nRP diversity. with the increase in speed 
and decrease in cost of genome sequencing as well as the 
rise of metagenomic sequencing projects, mining sequenc-
ing data sets is becoming increasingly important in PK and 
nRP discovery and characterization. Key goals for the nat-
ural products chemist with these data sets are to identify 
new biosynthetic pathways and predict their correspond-
ing natural products (Fig. 1). This in silico genome mining 
step is essential to triage known pathways or gene clusters 
that likely produce compounds with limited new chemical 
diversity so that the challenging and time consuming step 
of isolating and characterizing new PKs and nRPs can be 
focused on the highest value pathways. This review sum-
marizes and evaluates the web-based bioinformatic tools 
for genome mining available to the PK and nRP natural 
products community.

PK and NRP biosynthetic pathways are common 
and widely distributed in bacterial genomes

The growth in sequence data has revealed an enormous 
number of PK and nRP biosynthetic pathways. Analysis 
shows that PK and nRP pathways are broadly distributed 
across multiple and diverse bacterial genomes [13, 32, 51]. 
Data from the 223 complete bacterial genomes sequenced 
prior to 2005 shows that approximately 50 % of genomes 
contain at least one PK or nRP pathway and that there is 
a correlation between genome size above 5 Mb and total 
bp of polyketide synthase (PKS) and non-ribosomal pep-
tide synthetase (nRPS) genes [13]. A more recent analysis 

Abstract Microbial natural products have played a key 
role in the development of clinical agents in nearly all ther-
apeutic areas. Recent advances in genome sequencing have 
revealed that there is an incredible wealth of new polyke-
tide and non-ribosomal peptide natural product diversity to 
be mined from genetic data. The diversity and complexity 
of polyketide and non-ribosomal peptide biosynthesis has 
required the development of unique bioinformatics tools to 
identify, annotate, and predict the structures of these natu-
ral products from their biosynthetic gene clusters. This 
review highlights and evaluates web-based bioinformatics 
tools currently available to the natural product community 
for genome mining to discover new polyketides and non-
ribosomal peptides.

Keywords Genome mining · Polyketide · non-ribosomal 
peptide · Biosynthesis · Bioinformatics · natural product 
discovery

Introduction

Bacterial polyketides (PKs) and non-ribosomal peptides 
(nRPs) have been and continue to be essential sources of 
chemical diversity for drug discovery and development. 
These complex secondary metabolites have impacted all 
therapeutic areas leading to clinical agents including anti-
infectives, anticancer agents, cholesterol lowering drugs, 
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of 58 bacterial genomes containing representative examples 
of most of the sequenced bacterial phylogenic diversity, 
including major secondary metabolite producers, identi-
fied 180 PK and nRP biosynthetic pathways. This study 
also showed that greater than 50 % of genomes had one or 
more PK or nRP pathways [51]. The majority of pathways 
were from the Actinobacteria (≈9/genome) and the delta-
Proteobacteria (≈7/genome), a class of bacteria not well  
represented in the 2005 data set. Finally, a study of 210 
anaerobic bacteria genomes showed that 33 % possessed 
PK and nRP pathways [32].

while all three studies use different criteria for selecting  
the genomes to analyze as well as different methodolo-
gies for identifying PK and nRP biosynthetic pathways, a 
consistent trend emerges. Genomes of greater than 3 Mb 
are likely to have one or more PK and nRP gene clus-
ters. Of the 2,500 complete bacterial genome sequences 
and the nearly 10,000 incomplete genomes, over 7,000 
have genomes larger than 3 Mb (July 1 download of 
prokaryote.txt from nCBI) and are thus likely to have PK 
and nRP pathways. we can thus speculate that there are 
between 7,000 and 35,000 currently sequenced PK and 
nRP biosynthetic gene clusters, with this number projected 
to grow rapidly over the next few years. This is a rich data 
set to mine; however, its size and the diversity and com-
plexity of PK and nRP biosynthesis have required the 
development of unique bioinformatics tools to identify and 
annotate gene clusters as well as to predict their encoded 
products.

Detection of PK and NRP biosynthetic pathways 
in genomes

There are a number of challenges that need to be met for 
the application of bioinformatics tools to PK and nRP 
genome mining. The first is to identify within a genome the 
location of a PK and nRP biosynthetic pathway. The most 
common approach is to query the translated genome with 
an ortholog of an expected protein from the pathway. Con-
served catalytic domains such as ketosynthases (KS) from 
PKS pathways [22], and adenylation (A) or condensation 

(C) domains from nRPS pathways [23] are often used. 
A versatile query sequence is PksJ from Bacillus subtilis 
which contains both a type I PKS module and an nRPS 
module, enabling simultaneous identification of both types 
of pathways from a genome [61, 62]. Alternatively, highly 
specific target queries can be used. The recently character-
ized geranyl transferase from viridicatumtoxin biosynthesis 
was used as a query sequence for BLASTp analysis of the 
GenBank, JGI, and Broad-MIT fungal genome databases 
to identify nine gene clusters from nine different fungal 
genomes that likely generate geranylated aromatic polyke-
tides [10].

A more robust tool for the detection of PK and nRP 
biosynthetic pathways is the use of hidden Markov models 
(HMMs) [15]. HMMs are statistical models generated from 
multiple sequences. As such they are superior to pairwise 
search methods like BLAST at detecting distantly related 
homologs. HMMs have been developed to signature pro-
teins from type I, type II, and type III PK and nRP bio-
synthetic pathways [2, 18, 28, 31, 34, 44, 64]. These tools 
have successfully been incorporated into web-based search 
tools such as antiSMASH [4, 34], nP.searcher [33], naP-
DoS [67], PKMiner [28] (which focuses exclusively on 
type II PKs), and SMURF [26] (which focuses exclusively 
on fungal genomes), downloadable tools like CLUSeAn 
[59], and commercial tools including ClustScan [50]. These 
tools all enable researchers to scan large DnA data sets for 
PK and nRP biosynthetic pathways.

Because biosynthetic pathways are typically composed 
of multiple enzymes, the second task is to identify all the 
genes involved in the biosynthesis of the metabolite. These 
include genes encoding PKSs and nRPSs as well as those 
encoding tailoring enzymes for oxidation, methylation, and 
glycosylation of the core structure. In addition, genes cod-
ing for biosynthesis of essential building blocks and metab-
olites, such as activated sugars or starter units, regulatory 
elements, and, if necessary, resistance mechanisms can also 
be present in a gene cluster. Typically these genes are all 
clustered tightly together on the chromosome, simplifying 
their identification. This task is relatively straightforward 
for a user manually investigating a single gene cluster. 
However it is challenging to automate reliably. In general 

Fig. 1  Bioinformatics can 
play a key role in guiding 
natural products chemists in 
their genome mining projects, 
enabling them to focus on 
biosynthetic gene clusters likely 
encoding new natural product 
diversity
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the solution has been to assume that these additional genes 
do not extend particularly far from the core signature 
genes. For example, antiSMASH defines clusters as groups 
of signature genes within 10 kb of each other and extends 
the cluster 20 kb on each side of the last signature gene to 
define the boundaries of PK and nRP biosynthetic gene 
clusters [34]. nP.searcher annotates pathways as extend-
ing 15 kb upstream and downstream from a PKS or nRPS 
gene. Any additional PKS or nRPS genes in this window 
are added to the cluster and the gene cluster is expanded 
a further 15 kb from the newly added gene [33]. SMURF 
annotates fungal pathways as the 20 genes upstream and 
downstream of an identified PKS or nRPS gene. This 20 
gene window was established empirically by examination 
of 22 gene clusters from Aspergillus fumigates [26]. The 
use of large windows, 20 genes or 15-20 kb, ensures that 
the vast majority of pathway genes are included in the pre-
dicted gene cluster.

A concern with this automated analysis is that gene clus-
ters located close together in the genome may be merged 
into superclusters, as occurs with the salinilactam biosyn-
thetic gene cluster and the nRP siderophore gene cluster 
that follows less than 9 kb after it in Salinispora tropica 
[16]. while secondary metabolite biosynthesis gene clus-
ters are often found in genomic islands [39], individual 
gene clusters are typically separated by greater than 30 
genes or over 30 kb, minimizing supercluster formation.

For the analysis of bacterial whole genomes for gene 
cluster identification antiSMASH (http://antismash.seco
ndarymetabolites.org/), nP.searcher (http://dna.sherman.
lsi.umich.edu/), and naPDoS (http://napdos.ucsd.edu/) are 
all viable options. Using the Sorangium cellulosum genome 
as the query sequence [48], antiSMASH detects 5 PK, 
2 nRP, and 4 hybrid PK nRP gene clusters, nP.searcher 
identifies 2 PK, 1 nRP, and 2 hybrid PK nRP gene clus-
ters, and naPDoS locates 50 KS domains (from PK and 
hybrid gene clusters) and 20 C domains (from nRP and 
hybrid gene clusters). For comparison to high-quality man-
ual annotation, the authors who annotated the S. cellulo-
sum genome identified 3 PK, 2 nRP, and 4 hybrid PK nRP 
gene clusters [48]. The antiSMASH analysis thus compares 
favourably with detailed manual annotation for pathway 
identification. while the naPDoS analysis provides excel-
lent identification of the KS and C domains, it requires fur-
ther analysis to identify the number of different gene clus-
ters in the genome. Comparison of the antiSMASH data 
output with nP.searcher shows that antiSMASH provides 
a more detailed description of individual clusters identified, 
indicating for example if the PK gene clusters are type I, 
type II, type III or trans-AT and if a cluster also contains 
isoprenoid biosynthetic genes and enables the user to eas-
ily toggle between gene clusters in the browser interface. 
while nP.searcher also distinguishes between type I and 

trans-AT PK gene clusters, it is less flexible for toggling 
between gene clusters or visualizing the genetic organiza-
tion of a cluster. Lastly, in terms of ease of use for whole 
genome analysis antiSMASH, nP.searcher, and naPDoS 
are all easy to operate. while all enable users to upload 
DnA files, antiSMASH also enables users to enter nCBI 
accession numbers to perform analysis on sequenced, 
deposited genomes. nP.searcher and naPDoS provide their 
results very rapidly, typically less than 10 min, where as 
antiSMASH results from a genome analysis are typically 
available in 4 h or longer depending on the server load.

Identifying unique gene clusters

Having identified PK or nRP biosynthetic gene clusters 
from genomic data sets, the key challenge is to prioritize 
which gene clusters to investigate experimentally. Product 
identification, genetic disruption, heterologous expres-
sion, and biochemical characterization of gene clusters 
are experimentally intensive and cannot be realistically 
performed for all pathways identified from a genome or 
metagenomic data set. Identifying the gene clusters that 
are likely to encode new molecules is thus a key priority 
for genome mining. This requires the ability to compare 
target gene clusters to known gene clusters to identify  
genetically distinct pathways, a fairly straightforward 
task, and to predict the structure, or at least the core, of 
the encoded PK or nRP, an extremely challenging bioin-
formatics problem.

BLAST analysis of pathways can be effective in identi-
fying related biosynthetic pathways. For example BLASTn 
analysis of the oxytetracycline biosynthetic gene cluster 
from Streptomyces rimosus [65] identifies the chlorotetra-
cycline (unpublished, nCBI accession number AB039379), 
SF2575 [40], and the dactylocycline [58] biosynthetic gene 
clusters (Fig. 2). However, BLASTn analysis of the ped-
erin biosynthetic gene cluster [41] does not identify the 
onnamide biosynthetic gene cluster [42] even though these 
two pathways and compounds share substantial homology 
(Fig. 2). This is likely because the perderin biosynthetic 
pathway is separated into three genome regions. It is pos-
sible for nucleotide-based searches to not identify related 
gene clusters from organisms that differ greatly in GC 
content such as the actinomycetes (65–80 % GC) and fir-
micutes (≈35 % GC). Protein-based searches avoid this 
potential problem. BLASTp analysis of an individual core 
protein from a PK or nRP gene cluster generally provides a 
large number of good hits that must be manually curated to 
identify related pathways. For example BLASTp analysis 
of the last PKS protein in the biosynthesis of erythromy-
cin, eryIIIA, from Aeromicrobium erythreum [5], provides 
over 100 hits that are statistically indistinguishable from 

http://antismash.secondarymetabolites.org/
http://antismash.secondarymetabolites.org/
http://dna.sherman.lsi.umich.edu/
http://dna.sherman.lsi.umich.edu/
http://napdos.ucsd.edu/


446 J Ind Microbiol Biotechnol (2014) 41:443–450

1 3

the query (e-values of 0) with greater than 90 % sequence 
coverage.

The ClusterBlast and Subcluster Blast tools from ant-
iSMASH have provided a more automated approach to the 
identification of related gene clusters [4, 34]. The Cluster-
Blast algorithm sums the number of individual conserved 
genes between pathways with a bias to conserved core PKS 
and nRPS genes and sums the number of gene pairs with 
synteny between clusters again with a bias for core PKS 
and nRPS genes to quantify similarity between clusters. 
This tool enables rapid comparison of a new gene cluster 
to gene clusters deposited in the nCBI database. For exam-
ple, analysis of the erythromycin biosynthetic gene cluster 
form Aeromicrobium erythreum immediately shows it to be 
highly related to the erythromycin gene cluster from Sac-
charopolyspora erythraea [38], the lankamycin biosyn-
thetic gene cluster from Streptomyces rochei [53], and the 
megalomycin biosynthetic gene cluster from Micromonos-
pora megalomicea [57] (Fig. 2). Subcluster Blast searches 
translated query sequences against the protein sequences 
for 126 known subclusters that encode the production of 

starter units like 6-methylsalicylic acid, extender units like 
ethylmalonyl-CoA, and sugars such as activated deoxysug-
ars [4]. This enables rapid identification of the capacity 
for a particular gene cluster to produce specific chemical 
moieties. The automation of ClusterBlast and its graphical 
display of the gene cluster architecture for the query and 
hits make it very easy and rapid for a user to identify if a 
new gene cluster has a close homolog in the current nCBI 
database.

Phylogentic analysis of PKS and nRPS proteins is also a 
very powerful tool for comparison of PK and nRP biosyn-
thetic pathways. For example, phylogenic analyses of type 
II PKS KS domains [35] and cyclase (CYC) domains [19, 
28] show that they cluster based on the overall structure 
of the aromatic PK product such as angucycline, tetracy-
cline, or anthracycline type aromatic PKs. This analysis has 
proven useful in the discovery of new aromatic polyketides 
from bacterial genomes [52] as well as metagenomic DnA 
[17]. Of particular interest for new natural product discov-
ery in these phylogenic analyses are sequences that cluster 
away from the known groups, which suggest possible new 

Fig. 2  The structure of polyke-
tides from related type II (1–4), 
trans-AT (5,6), and type I (7–9) 
biosynthetic pathways
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structural types. A large number of tools are currently avail-
able for phylogentic analysis. A particularly approachable, 
web-based, user friendly interface is the Phylogeny.fr plat-
form (http://www.phylogeny.fr) [12], which provides non-
experts a ‘One Click’ mode that links multiple sequence 
alignment, tree building, and tree rendering together to rap-
idly and with high accuracy, construct a phylogenic tree.

Predicting structure from gene cluster sequence data

De novo structure prediction from gene cluster DnA 
sequence data is extremely challenging. Outstanding tools 
have been developed to predict the function of individual 
catalytic domains within PK and nRP biosynthetic pathways. 
Using these tools, it is possible to identify reliably a PK or 
nRP pathway from a genome data set that is responsible for 
the production a known metabolite. Detailed manual predic-
tion of structure from gene cluster data can often provide a 
reasonable estimate for the core structure of a PK or nRP but 
automated structure prediction is unreliable in most cases.

As many of the catalytic domains in PK and nRP bio-
synthesis have been well-characterized, it has become pos-
sible to predict their function reliably. In nRP pathways, 
the substrate selectivity of the A domains, which select the 
amino acid building blocks, can be predicted with a good 
degree of accuracy. Based on high-resolution structural 
characterization of A domains, key residues in the bind-
ing cavity responsible for substrate specificity were identi-
fied and used to build predictive models based on sequence 
alignment for substrate specificity [9, 49]. These models 
have been refined into HMMs [27, 43] and Support vec-
tor Machines (SvMs) [47], which can be used to predict 
specificity with a high degree of reliability for 40–50 dif-
ferent substrates. while there are fewer substrates in PK 
pathways, prediction has been somewhat more challenging. 
The most common substrates for the acyltransferase (AT) 
domains, which are responsible for selection of the correct 
building block for PK biosynthesis [14], are malonyl-CoA 
(MCoA) and methylmalonyl-CoA (MMCoA). MCoA-
selective ATs cluster apart from MMCoA-selective ATs in 
phylogenetic analyses with a few exceptions [25, 46, 63]. 
ATs with selectivity toward less common substrates such 
as ethylmalonyl-CoA and methoxymalonyl-CoA appear 
to have evolved convergently from MCoA and MMCoA 
ancestors leading to their clustering in both the MCoA and 
MMCoA selective clades [46]. Models based on key resi-
dues identified through structural studies of the substrate 
binding pocket [1, 33, 63] and HMM based on multiple 
sequence alignment [27, 36] have been successful at pre-
dicting MCoA and MMCoA specificity and moderately 
successful at predicting other substrates. Many of these 
predictive tools are easily accessible in the comprehensive 

bioinformatics platforms antiSMASH and nP.searcher 
as well as more specific tools such as nRPSpredictor2 
(nrps.informatik.uni-tuebingen.de) [47], nRPSsp (http
://www.nrpssp.com) [43], SBSPKS (http://www.nii.ac.
in/sbspks.html) [1] and nRPS-PKS-substrate-predictor 
(http://www.cmbi.ru.nl/nRPS-PKS-substrate-predictor) 
[27].

Predicting the order of connectivity of the building 
blocks used by PK and nRP pathways has generally relied 
on collinearity. This term refers to the observation that in 
the vast majority of cases the order of the genes in the gene 
cluster corresponds to the order in which the proteins con-
struct the PK or nRP product [8]. Therefore, the predicted 
connectivity of individual building blocks selected by the 
A and AT domains is defined by the order of the A and AT 
coding regions in the gene cluster. This approach is used by 
antiSMASH and nP.searcher to connect building blocks and 
assemble putative structures. However, not all PK and nRP 
biosynthetic pathways follow collinearity. To predict the 
order of PKS protein–protein interactions, which define the 
order of substrate addition, a bioinformatics tool has been 
developed to examine the n- and C-termini of these proteins 
to identify complementary intermolecular contacts [64] and 
this has been incorporated into the SBSPKS tool [1]. Core 
PK structure prediction from type I PKSs currently lacks 
good bioinformatics tools to evaluate module skipping as 
seen in 10-deoxymethynolide biosynthesis [3] and iterative 
module use as seen in stigmatellin biosynthesis [20].

A key aspect of many PKs and nRPs is the presence 
of stereogenic elements. Prediction of stereochemistry in 
nRPs is robust. A domain specificity can predict the con-
figuration of the amino acid building blocks. The presence 
of an epimerization domain indicates that the stereochemis-
try of the amino acid building block in the peptidyl donor-
intermediate will be inverted. C domains have been shown 
to be selective for the α-carbon stereochemistry of the 
acceptor amino acid and the donor peptidyl groups [11]. 
Phylogenetic analysis of C domains shows that they cluster 
based on the stereochemistry of the donor groups enabling 
further prediction of the configuration of the final peptide 
product [44]. In PKs, stereogenic alcohols are common and 
frequently introduced via reduction of a β-ketothioester 
intermediate by a ketoreductase (KR) domain. Multiple 
sequence alignment has identified type A and type B KRs 
from type I PKSs, which differ based on conserved resi-
dues in the binding cavity and produce the 3D and 3L con-
figured alcohols, respectively [7, 45]. There is a proposed 
correlation between the stereogenic configuration of the 
beta-hydroxy thioesters and the configuration of olefins 
generated by dehydratase domains (DH) in type I PKSs, 
with the 3L alcohols generating the E olefins and 3D alco-
hols forming the much less common Z olefins [21, 45, 55, 
60]. However, it is clear from a number of pathways that 

http://www.phylogeny.fr
http://www.nrpssp.com
http://www.nrpssp.com
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this correlation has many exceptions [56]. There are also 
emerging models to predict the stereochemical outcome of 
enoyl reductases (eR), which generate the fully saturated 
acyl-thioester intermediate in type I PKS [30]. However, 
this model likely needs further refinement to have strong 
predictive value [29]. Stereogenic elements in iterative fun-
gal and type II PKSs have proven to be much harder to pre-
dict [24, 66] and no reliable models currently exist for their 
prediction.

Some of the predictive models for stereochemistry have 
been incorporated into bioinformatics tools. For nRPs, 
antiSMASH, nP.searcher, and naPDoS all provide clear 
predictions for amino acid α-carbon stereochemistry. Ant-
iSMASH explicitly provides the stereochemistry of amino 
acid building blocks in its predictive core structure image 
as does nP.searcher in its SMILeS output of predicted 
structures. naPDoS identifies e domains and the stere-
oselectivity of C domains, enabling the user to predict 
stereochemistry. Most of the predictive models for PK ste-
reochemistry are insufficiently reliable for incorporation 
into bioinformatics tools. However, Clustscan has a robust 
prediction tool for the stereochemistry of KR reductions 
in type I PKS pathways. In addition the legacy version of 
antiSMASH (1.0) assigned KRs to type A or B, enabling 
the user to predict stereochemistry. This feature, however, 
is absent in the most recent version of antiSMASH (2.0).

Clear challenges exist in automating bioinformatics-
based structure prediction of PK and nRP structures. How-
ever, current state-of-the-art in nRP structure prediction 
is sufficient to provide natural products researchers with 
insight into genome mining projects. Using the predicted 
amino acid composition, it is possible to search databases 
such as PubChem or nORIne (bioinfo.lifl.fr/norine/), 
which contains the structures of over 1,100 nRPs [6]. This 
search is highly complementary to the sequence-based 
searches as it can identify nRPs analogous to the search 
query whose biosynthetic gene clusters have yet to be 
sequenced. while antiSMASH and nP.searcher have robust 
automated prediction tools for amino acid composition 
and connectivity, backbone heterocyclization and tailoring 
chemistries, two common events in nRP biosynthesis, are 
not well accounted for. To address this issue, nP.searcher 
has user controlled features enabling dimerization, hetero-
cyclization, and glycosylation to be included in structure 
prediction, generating a diverse set of predicted products 
for each pathway.

Automated structure prediction for PKs is not cur-
rently effective. Detailed manual prediction can, however, 
be effective in predicting core structures as was seen for 
in the discovery of thailandamide A [37] and elansolide 
D [54]. Among PK pathways, structure prediction is the 
most advanced for the type I pathways. Prediction of prod-
ucts from trans-AT pathways is improving and is based 

on phylogenic analysis of the KS domains, which clus-
ter based on the structure at the α and β carbons of the 
upstream growing acyl-chain [37, 54]. Prediction of type II 
PK structures is limited to the type of core structure based 
on the KS [35] and CYC [19, 28] domains; however, the 
length of type II PKs product and its final tailoring are very 
hard to predict. Lastly, little progress has been made on the 
prediction of fungal PK structures from their correspond-
ing gene clusters. with advances in PK structure predic-
tion, it may be possible in the future to access high quality 
structure predictions through automated methods. For now, 
however, development of these predictive tools is an active 
and exciting area of research.

Conclusions

with the wealth of minable sequence data now available 
to natural products chemists, a number of powerful bio-
informatics tools have been developed to identify PK and 
nRP pathways and determine if they are likely to encode 
unique compounds. The most comprehensive tool currently 
available is antiSMASH. It possesses an array of features, 
including the ability to search genomes and metagenomes 
for core PK and nRP genes using HMMs, the ability to 
define the boundaries of a particular gene cluster, a search 
tool to identify related gene clusters in the nCBI database, 
and structural prediction tools to provide an rough estimate 
of the core structure of the nRP or PK product. A num-
ber of more specialized tools also exist for natural prod-
ucts researchers focusing on, for example, fungal pathways 
(SMURF) or aromatic polyketide pathways (PKMiner).

Because structure prediction is generally poor, the most 
reliable method for genome mining to find new natural 
products is currently a comparative genetic approach using 
tools such as ClusterBlast in antiSMASH. This type of tool 
can rapidly identify unique gene clusters from sequence 
data sets. However, identified unique gene clusters may 
not necessarily encode new chemical diversity, rather they 
represent PK and nRP pathways that have not yet been 
sequenced. A detailed manual structure prediction, guided 
by a number of bioinformatics tools, can be used to fur-
ther test if a pathway encodes new chemical diversity. This 
refined unique subset represents high value pathways that 
likely encode new natural products. experimental charac-
terization of these pathways will hopefully lead to the dis-
covery of new natural product structures.
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